CALCULATION OF THE TEMPERATURE FIELD IN A
PLATE WITH INTERNAL HEAT‘SOURCES

G. A. Gemmerling UDC 536.21

We present a method for calculating the stationary temperature field in a long thin plate with
internal heat sources, the plate surface being washed over by a flow of gas. The solution is
obtained in the form of a Fourier series with strong convergence,

The calculation of the stationary temperature field in a plate with internal heat sources amounts to
integrating the equation

&T T "

— L (1)
ax* oy A
We assume one side, y = a, of the plate to be insulated and the other side, y = 0, to be washed over
by a nonboiling liquid whose motion we consider to be stationary and the flow homogeneous. If ¢y = const,
the change in the kinetic energy of the liquid as it moves along the plate is much less than the increase in
its heat content, and if there is no heat source in the liquid we can write the energy equation for the liquid
in the form

Acp%gg— = g (x). (2)
We integrate Eq. (2) under the assumption that
A = const, Tg 0) = T,. (3)
We assume that the heat flow q(x) from the plate to the liquid is convective
gx) = [T (x, 0)— Ty (x)], (4)
and that the heat transfer coefficient o depends only on the outflow rate A,
We write the boundary conditions for Eq. (1) in the form
A o = g (x), 7»(?1 =0. (5)
%Y ly=0 Y ly=a

If 7> a, we can exclude from consideration the boundary conditions at the ends of the plate.

The general statement of the problem is similar to a type of problem given in [1] and the particular
solution of it given in [2] (where it was assumed that Tg = const).

We seek a solution of the problem (1)-(5) in the form of a Fourier series. We represent the function
q(x), as yet unknown, by its Fourier series:

g (%) = a, -+ 2 la, cos nmx/l + b, sin nsx/l],

(6)
n==1
We introduce the expansion

2 402 ks 1
y—2ya = — 2—;—+i2 E ) cos krny/a {7)
T
=1

¥. E. Dzerzhinskii Military Engineering Academy, Moscow. Translated from Inzhenerno-Fizi-
cheskii Zhurnal, Vol. 20, No. 3, pp. 411-414, March, 1971.

Original article submitted March 10, 1970.

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,

N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

291



and seek a solution of Eq. (1) in the form
T (x, y) = — q (%) (4> — 2ya)/2ah + A, + 2 [A,, cos nsx/l - B, sin nax/l]
n=1

+ E 2 [A, cos naux/l + B, sin nrux/l] cos ky/a. (8

n=1 k={

a, = [l+ —%— (ann/l)z]/(nnﬁ B = n¥/k? [(El—ﬁ)z—l- (%)2] ,
Yo =£ (‘?‘)2 ; Brr— —A% Ay

We now substitute the expansions (6)-(8) into Egs. (1)-(2) and express the coefficients A,, By, Ayk, Bnk
in terms of ay, b,. The final expressions for T(x, y) and T(x, 0) assume the form

We introduce the notation

(9)

1 oY o
Tx, )= — — - — Znt
(x. y) oan I (x) (9* —290) + A, ,,2_1‘ » (a, cos naux/l
+ b, sin nax/l) + ;:; ; a% (% )2 B.x (@, cos nwx/l 4- b, sinnnxfl) cos knyja; a, = ap; , (10)
T(x, 0)=4,-+ E Vo (@, cos nnux/l - b, sin nwxfl). (11

n=1

The solution of Eq. (2) with Eq. (6) taken into account is

Tg (x)=C, + L* E ! [ansin G#—bncos n—;nf] ,
n=|

D

nnD (12)
C,=T,+ i bylinaD, D= Ac,.
n=1
We next express the function ax/D in a Fourier series:
X = —62"— -+ i (e, cos nax/l + f,, sinnax/fl). (13)

n=]
In order to obtain a solution with strong convergence 3], we extend the function x onto the interval [-{, 0]

so that the function F(x) resulting from this extension will be continuous on the interval [, 7], along with
its first two derivatives. The function F(x) then satisfies the condition

F ' x for 0L x|, (14)
()= {x —12x5)18 —30x%B — 20532 for —[Lx <0,
Expanding F(x) in a Fourier series in the interval (-1, I), we obtain
e, = 240! {—-l—:——!z;—] fo=0, if n=2r41,r=1,2 ...,
=0, = 1440/ , if n=2r
=0, [=lH0l
Substituting the expansions (11)-(13) into Eq. (4), we find a,, by:
ay = —gpfny by=—"n,f, for n=2r,
a,=—hye, b,=g.e, for n=2r+1,
allasnn aa, (naDy* (1—ay,) (16)
= —"""5 hn = ;
Pn Dp,

P, = nabD (1— ay?) + o,
We can now find T(x, y) and Tg(x) from the formulas (10) and (12).

We now examine the convergence of the resulting solution. The coefficients a,, b, ~ n~¢, consequent-

ly, the series (6), together with its first two derivatives, converges absolutely and uniformly. Since o,
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~ 1, then A, By ~ n"4 Apy and By are of order k¢ for fixed n and of order ~n~* for fixed k. Thus all
the series, which arose in the course of obtaining the solution, permit the operations of termwise addition,
differentiation, and comparing of coefficients, operations which we have used above,

To calculate the temperature fields from these equations we need to compute the first three to four
terms of the series obtained.

The solution given here was obtained for ¥ = const. If ¥ = ¥(x), then, expanding this function in a
Fourier geries

P(x) = s, - E [s,, cos naux/l -+ £, sin nnx/l] (17
n=1
and substituting this expansion into Eq. (1), we obtain corrections to A;, Bn. The rest of this solution re-
mains unchanged.

Suppose now that we have a heat source ¥, in the moving liquid. The corresponding correction is in-
troduced into the right member of Eq. (2). If ¥, = const, then only the coefficient of the second term in
Eg. (12) is changed. If, however, 11)1 = lPi(x), it is then necessary to represent this function in the form of
a series of the type (17). In this case, the second and third terms in Eq. (12) are changed, and also the
form of the coefficients (16). However the scheme of the solution stays the same,

NOTATION
X, ¥ are the coordinates along and across the plate, m;
T, y), Tglx) are the temperatures of the plate and moving liquid (gas), °K;
{ is the plate dimension in liquid flow direction, m;
a is the thickness of plate, m;
A is the thermal conductivity of plate material, W/m -deg;
¥, ¥, are the powers of heat sources in volume of plate and liquid, W/m?;
cp is the heat capacity of liquid, W . sec/kg - deg;
A is the liquid flow rate, kg/m - sec;
a is the heat transfer coefficient, W/m?- deg;
q(x) is the heat flux through plate —liquid boundary, W/m?;
T, is the initial temperature of liquid, °K.

LITERATURE CITED

1. T. L. Perel'man, Int. J. Heat and Mass Transfer, 3, No. 4 (1961).

2. T. L. Perel'man, Inzh, Fiz. zh., 3, No. 5 (1960).

3. L. V. Kantorovich and V, I, Krylov, Approximate Methods of Higher Analysis, Interscience, New
York (1958).

293



